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Summary

The curve shortening flow (CSF), which evolves a curve in the normal
direction with velocity proportional to its curvature, has been explored
extensively for curves in the Euclidean plane. It is known that embed-
ded, closed curves shrink to round points in finite time. The case of
curves with fixed endpoints remains largely unexamined. We prove re-
sults for the evolution of a curve under curve shortening flow on the
plane and the sphere.

Geometry of the Curve Shortening Flow

Let N be a unit normal vector, and let κ be the scalar curvature with
respect to N : κ = 〈K,N〉. The Frenet equations take the following
form:

∇TT = κN and ∇TN = −κT.

Many results for curve shortening flow in the plane from Gage-Hamilton
[2] can be generalized to arbitrary 2-manifolds.

dL

dt
= −

∫
κ2ds.

∇ d
dt
T = T (κ)N and ∇ d

dt
N = −T (κ)T.

Most importantly, we have the following evolution equation for curva-
ture:

d

dt
κ = ∇T∇Tκ + κ3 + κR(N, T, T,N);

R(N, T, T,N) is called the “sectional curvature” of Σ.

Curve Shortening Flow

Let F : [a, b] → Σ parameterize a smooth curve. The first variation of
L, the length of the curve, defines the curvature vector K. We consider
the Curve Shortening Flow evolution equation

∂tF = K,

subject to a Dirichlet boundary condition

F (·, t)
∣∣
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= F (·, 0)
∣∣
∂I
.

Let T be the unit tangent vector; the CSF corresponds to

(∂tF )i = (∇T∇TF )i = ∂2
ssF

i + ΓiklT
kT l

where s is the arc-length parameter, and Γ is the Christoffel symbol
determined by the metric on Σ.

On R2, in Cartesian coordinates the CSF is given by
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On S2, the CSF is given in spherical coordinates (θ, φ) by
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where (θ, 0) is a point on the equator.

Main Results

◦We can flow a curve F so long as the curvature is defined.

◦We use a distance comparison, together with control near the end-
points, to show that curves in convex regions of the plane and sphere
do not form singularities.

◦Therefore the flow exists for all time and the curves approach the
geodesic connecting the (fixed) endpoints.

Examples of curves in convex regions of the plane and sphere.

Distance Comparisons

Let D(p, q) be the geodesic distance between two points p, q on the
curve, and L(p, q) be the distance along the curve. Following [3], we
look at the ratio D/L as a measure of the straightness of the curve.
Note that D/L ≡ 1 when F is a geodesic. We prove that, in R2 or S2,
if D/L attains a local interior minimum at (p, q) at time T , then

d

dt

D

L
(p, q;T ) ≥ 0

with equality if and only if F is a geodesic. Our proof when Σ = R2 is
a modification of that in [3].

Control Near the Endpoints

In a neighborhood of each endpoint it is possible to choose coordinates
so that the curve is given by a graph. Applying work of Angenent [1]
we can show that the curve remains an embedded graph and does not
form singularities in the chosen neighborhood.
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