

PUZZLE OF THE WEEK (3/9/2017 - 3/15/2017)

Problem: Find, with proof, all continuously differentiable functions f(x) of real variable x for which f(0) = 0 and

$$|f'(x)| \le |f(x)|$$
 for all real x .

Solution: The only such function is the constant function f(x) = 0.

Consider the set $\mathcal{U} = \{x \in \mathbb{R} \mid f(x) = 0\}$; the set \mathcal{U} is non-empty due to the given initial condition. Also, \mathcal{U} is closed as the pre-image under the continuous function f of the closed set $\{0\}$. It remains to show that \mathcal{U} is open; by connectedness of \mathbb{R} we then know that $\mathcal{U} = \mathbb{R}$.

Let $x_0 \in \mathcal{U}$ and fix some $0 < \varepsilon < 1$. Let

$$M_{x_0} = \max_{x_0 - \varepsilon \le x \le x_0 + \varepsilon} |f(x)|.$$
(1)

Suppose that $M_{x_0} \neq 0$. We note that $|f'(x)| \leq |f(x)| \leq M_{x_0}$ on the interval $[x_0 - \varepsilon, x_0 + \varepsilon]$ and that – due to the Mean Value Theorem –

$$|f(x)| = |f(x) - f(x_0)| \le M_{x_0} |x - x_0| \le M_{x_0} \varepsilon < M_{x_0}$$
 for all $x_0 - \varepsilon \le x \le x_0 + \varepsilon$

This contradicts the assumption (1). Thus, $M_{x_0} = 0$ and $[x_0 - \varepsilon, x_0 + \varepsilon] \subseteq \mathcal{U}$.