LEWIS AND CLARK COLLEGE Department of Mathematical Sciences

PUZZLE OF THE WEEK (2/23/2017-3/1/2017)

Problem: Let n be a positive integer. Find, in terms of n, the value of the determinant of the matrix

$$
\left(\begin{array}{ccccccc}
1 & 2 & 3 & \ldots & n-2 & n-1 & n \\
2 & 3 & 4 & \ldots & n-1 & n & n \\
3 & 4 & 5 & \ldots & n & n & n \\
. & . . & . & \ldots & . . & . . & . . \\
n-1 & n & n & \ldots & n & n & n \\
n & n & n & \ldots & n & n & n
\end{array}\right)
$$

and justify your claim.
Solution: The value of the determinant is $(-1)^{n(n-1) / 2} \cdot n$.
The value of the determinant is invariant under subtraction of one row from another. By subtracting the $(n-1)$-st row from the last row, followed by subtracting the $(n-2)$-nd row from the $(n-1)$-st row, and just generally subtracting the i-th row from the $i+1$-st row we see that the determinant we are looking for is equal to the determinant of

$$
\left(\begin{array}{ccccccc}
1 & 2 & 3 & \ldots & n-2 & n-1 & n \\
1 & 1 & 1 & \ldots & 1 & 1 & 0 \\
1 & 1 & 1 & \ldots & 0 & 0 & 0 \\
. . & . & . . & \ldots & . . & . & . . \\
1 & 1 & 0 & \ldots & 0 & 0 & 0 \\
1 & 0 & 0 & \ldots & 0 & 0 & 0
\end{array}\right) .
$$

By swapping rows the last determinant can be brought into the lower diagonal form:

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
1 & 1 & 0 & \ldots & 0 & 0 & 0 \\
1 & 1 & 1 & \ldots & 0 & 0 & 0 \\
. . & . & . . & \ldots & . . & . . & . . \\
1 & 1 & 1 & \ldots & 1 & 1 & 0 \\
1 & 2 & 3 & \ldots & n-2 & n-1 & n
\end{array}\right) .
$$

The determinant of this matrix is n. Note that we need $(n-1)+(n-2)+$ $\ldots+2+1=\frac{n(n-1)}{2}$ swaps to achieve this lower diagonal form. Thus, the value of the original determinant is

$$
(-1)^{n(n-1) / 2} \cdot n .
$$

