

PUZZLE OF THE WEEK (2/23/2017 - 3/1/2017)

Problem: Let n be a positive integer. Find, in terms of n, the value of the determinant of the matrix

 $\begin{pmatrix} 1 & 2 & 3 & \dots & n-2 & n-1 & n \\ 2 & 3 & 4 & \dots & n-1 & n & n \\ 3 & 4 & 5 & \dots & n & n & n \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ n-1 & n & n & \dots & n & n & n \\ n & n & n & \dots & n & n & n \end{pmatrix}$

and justify your claim.

Solution: The value of the determinant is $(-1)^{n(n-1)/2} \cdot n$.

The value of the determinant is invariant under subtraction of one row from another. By subtracting the (n-1)-st row from the last row, followed by subtracting the (n-2)-nd row from the (n-1)-st row, and just generally subtracting the *i*-th row from the i + 1-st row we see that the determinant we are looking for is equal to the determinant of

1	2	3	 n-2	n-1	n
1	1	1	 1	1	0
1	1	1	 0	0	0
1	1	0	 0	0	0
$\backslash 1$	0	0	 0	0	0/

By swapping rows the last determinant can be brought into the lower diagonal form:

(1)	0	0	 0	0	$0 \rangle$
1	1	0	 0	0	0
1	1	1	 0	0	0
1	1	1	 1	1	0
$\backslash 1$	2	3	 n-2	n-1	n

The determinant of this matrix is n. Note that we need $(n-1) + (n-2) + \dots + 2 + 1 = \frac{n(n-1)}{2}$ swaps to achieve this lower diagonal form. Thus, the value of the original determinant is

$$(-1)^{n(n-1)/2} \cdot n.$$