PUZZLE OF THE WEEK (2/2/2017-2/8/2017)

Problem: Suppose $a_{1}, a_{2}, \ldots, a_{2017}$ and $b_{1}, b_{2}, \ldots, b_{2017}$ are two permutations of the set of numbers $1,2,3, \ldots, 2017$. Find, with proof, the minimum value of

$$
a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{2017} b_{2017}
$$

Solution: The minimum value is

$$
1 \cdot 2017+2 \cdot 2016+3 \cdot 2015+\ldots+2016 \cdot 2+2017 \cdot 1=1369657969
$$

Without loss of generality we may assume that (in that particular order) we have

$$
\left(a_{1}, a_{2}, \ldots, a_{2017}\right)=(1,2, \ldots, 2017)
$$

The claim is that the minimum value of the expression $a_{1} b_{1}+\ldots+a_{2017} b_{2017}$ is then obtained for

$$
\left(b_{1}, b_{2}, \ldots, b_{2017}\right)=(2017,2016, \ldots, 1)
$$

Suppose the opposite. Then there exists a pair on integers $1 \leq i<j \leq 2017$ such $b_{i}<b_{j}$. Let $b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{2017}^{\prime}$ be the permutation obtained from b_{1}, b_{2}, \ldots, b_{2017} by swapping b_{i} and b_{j}. The difference between $a_{1} b_{1}+\ldots+a_{2017} b_{2017}$ and $a_{1} b_{1}^{\prime}+\ldots+a_{2017} b_{2017}^{\prime}$ is then equal to

$$
a_{i} b_{i}+a_{j} b_{j}-a_{i} b_{i}^{\prime}-a_{j} b_{j}^{\prime}=i b_{i}+j b_{j}-i b_{j}-j b_{i}=(i-j)\left(b_{i}-b_{j}\right)>0
$$

In other words, the value of $a_{1} b_{1}^{\prime}+\ldots+a_{2017} b_{2017}^{\prime}$ would be smaller than $a_{1} b_{1}+\ldots+a_{2017} b_{2017}$. Contradiction.

