LEWIS AND CLARK COLLEGE Department of Mathematical Sciences

PUZZLE OF THE WEEK (1/19/2017-1/25/2017)

Problem: What is the maximum number of points on a circle of radius 1 such that the distance between any two of the points is strictly greater than $\sqrt{2}$? Justify your claim.

Solution: The maximum number is 3 .
The existence of a triple of points with said property is clear from the example of $(1,0),(-1 / 2, \sqrt{3} / 2),(-1 / 2,-\sqrt{3} / 2)$ in the coordinate plane. Now suppose there existed four distinct points A_{1}, A_{2}, A_{3} and A_{4} on the unit circle with $d\left(A_{i}, A_{j}\right)>\sqrt{2}$ for all $1 \leq i \neq j \leq 4$. Without loss of generality we may assume that $A_{1}=(1,0)$. Let us denote

$$
A_{2}=\left(a_{21}, a_{22}\right), \quad A_{3}=\left(a_{31}, a_{32}\right), \quad A_{4}=\left(a_{41}, a_{42}\right)
$$

In algebraic terms the conditions that

$$
d\left(A_{1}, A_{2}\right)^{2}>2, \quad d\left(A_{1}, A_{3}\right)^{2}>2, \quad d\left(A_{2}, A_{3}\right)^{2}>2
$$

are equivalent to

$$
a_{21}<0, \quad a_{31}<0, \quad a_{21} a_{31}+a_{22} a_{32}<0,
$$

respectively. Since $a_{21} a_{31}>0$, we see that a_{22} and a_{32} must carry opposite \pm signs. Using the point A_{4} in place of the point A_{3} allows us to conclude that $a_{41}<0$ and that a_{22} and a_{42} must carry opposite \pm signs. Consequently, a_{32} and a_{42} must carry the same \pm sign and we have

$$
d\left(A_{3}, A_{4}\right)^{2}=\left(a_{31}^{2}+a_{32}^{2}\right)+\left(a_{41}^{2}+a_{42}^{2}\right)-2\left(a_{31} a_{41}+a_{32} a_{42}\right)<2 .
$$

Contradiction.

