SOLUTION OF THE PUZZLE OF THE WEEK
 (11/23/2016-11/29/2016)

Problem: How many different pairs of integers (x, y) are there with $x^{2}-y^{2}=$ 2016? Justify your claim.

Solution: There are 48 such pairs.
Note that $x^{2}-y^{2}=2016$ can be factored as

$$
(x-y)(x+y)=2^{5} \cdot 3^{2} \cdot 7 .
$$

Since integers $x+y$ and $x-y$ are of the same parity, solutions (x, y) have to be such that $x+y$ and $x-y$ are both even. By considering prime factorizations of $x+y$ and $x-y$, we see that solutions of our equation are in $1-1$ correspondence with integer divisors of

$$
2^{3} \cdot 3^{2} \cdot 7
$$

There are $(1+3)(1+2)(1+1)=24$ positive divisors of $2^{3} \cdot 3^{2} \cdot 7$. For our problem we need to include the possibility of negative divisors as well; thus our problem has 48 solutions.

