## SOLUTION OF THE PUZZLE OF THE WEEK

(11/16/2016 - 11/22/2016)

**Problem:** Suppose  $X : \mathbb{N} \to \mathbb{R}$  is a random variable with  $E[X^2] = 1$  and  $E[X^4] = 2$ . (Here E[Y] denotes the expectation of the random variable Y.) Determine the largest possible value of  $E[X^3]$ , and justify your claim.

**Solution:** The maximum value is  $\sqrt{2}$ .

Let p denote the probability density function on  $\mathbb{N}$ . For simplicity let us use  $x_n = X(n)$  and  $p_n = p(n)$ . We then have

$$E[X^2] = \sum_{n=1}^{\infty} x_n^2 p_n = 1 \quad E[X^4] = \sum_{n=1}^{\infty} x_n^4 p_n = 2.$$
 (1)

By using the Cauchy-Schwarz Inequality for the weighted dot-product  $(\vec{u}, \vec{v}) \mapsto \sum u_n v_n p_n$  we get

$$E[X^3] = \sum_{n=1}^{\infty} x_n^3 p_n = \sum_{n=1}^{\infty} (x_n \cdot x_n^2) p_n \le \left(\sum_{n=1}^{\infty} x_n^2 p_n\right)^{1/2} \cdot \left(\sum_{n=1}^{\infty} x_n^4 p_n\right)^{1/2} = \sqrt{2}.$$

Furthermore, the equality is achieved when  $X^2$  and  $X^4$  are proportional:

$$x_n^2 = \lambda x_n^4$$
 for all  $n \in \mathbb{N}$ .

It follows from (1) that  $1 = 2\lambda$ , i.e  $\lambda = \frac{1}{2}$ . From here we see that non-zero values  $x_n$  of the most optimal X are all equal to  $\sqrt{2}$  and that  $E[X^3] = \sqrt{2} \cdot E[X^2] = \sqrt{2}$ .