SOLUTION OF THE PUZZLE OF THE WEEK
 (11/16/2016-11/22/2016)

Problem: Suppose $X: \mathbb{N} \rightarrow \mathbb{R}$ is a random variable with $E\left[X^{2}\right]=1$ and $E\left[X^{4}\right]=2$. (Here $E[Y]$ denotes the expectation of the random variable Y.) Determine the largest possible value of $E\left[X^{3}\right]$, and justify your claim.

Solution: The maximum value is $\sqrt{2}$.
Let p denote the probability density function on \mathbb{N}. For simplicity let us use $x_{n}=X(n)$ and $p_{n}=p(n)$. We then have

$$
\begin{equation*}
E\left[X^{2}\right]=\sum_{n=1}^{\infty} x_{n}^{2} p_{n}=1 \quad E\left[X^{4}\right]=\sum_{n=1}^{\infty} x_{n}^{4} p_{n}=2 \tag{1}
\end{equation*}
$$

By using the Cauchy-Schwarz Inequality for the weighted dot-product $(\vec{u}, \vec{v}) \mapsto$ $\sum u_{n} v_{n} p_{n}$ we get
$E\left[X^{3}\right]=\sum_{n=1}^{\infty} x_{n}^{3} p_{n}=\sum_{n=1}^{\infty}\left(x_{n} \cdot x_{n}^{2}\right) p_{n} \leq\left(\sum_{n=1}^{\infty} x_{n}^{2} p_{n}\right)^{1 / 2} \cdot\left(\sum_{n=1}^{\infty} x_{n}^{4} p_{n}\right)^{1 / 2}=\sqrt{2}$.
Furthermore, the equality is achieved when X^{2} and X^{4} are proportional:

$$
x_{n}^{2}=\lambda x_{n}^{4} \text { for all } n \in \mathbb{N} .
$$

It follows from (1) that $1=2 \lambda$, i.e $\lambda=\frac{1}{2}$. From here we see that non-zero values x_{n} of the most optimal X are all equal to $\sqrt{2}$ and that $E\left[X^{3}\right]=$ $\sqrt{2} \cdot E\left[X^{2}\right]=\sqrt{2}$.

