SOLUTION OF THE PUZZLE OF THE WEEK (10/26/2016-11/1/2016)

Problem: Find all polynomials $P(x)$ with real coefficients for which

$$
P(3-2 x)=4 P(x)
$$

for all real x.

Solution: The only such polynomials take the form of

$$
P(x)=C(x-1)^{2}, \quad C \text { a real number. }
$$

Suppose r was a root of $P(x)$; then so would be $3-2 r$. If $r \neq 1$ then the sequence

$$
\begin{aligned}
r_{0}=r, & r_{1}=3-2 r=-2(r-1)+1, \\
& r_{2}=3-2 r_{1}=4(r-1)+1, \quad r_{3}=3-2 r_{2}=-8(r-1)+1, \ldots
\end{aligned}
$$

i.e. the sequence $r_{n}=(-2)^{n}(r-1)+1$, has infinitely many distinct terms all of which serve as roots of P. Since polynomials can only have finitely many roots, it follows that $r=1$ is the only possible root of $P(x)$. In other words, $P(x)$ must take the form of

$$
P(x)=C(x-1)^{n}
$$

for some real number C and some non-negative integer n. In that case we have

$$
P(3-2 x)=2^{n} C(x-1)^{n}=2^{n} P(x),
$$

and we see that $n=2$. Overall, we conclude that $P(x)=C(x-1)^{2}$.

