SOLUTION OF THE PUZZLE OF THE WEEK (10/19/2016-10/25/2016)

Problem: Let n be a positive integer. Find, with proof, the value of the sum

$$
1-\binom{n}{2}+\binom{n}{4}-\binom{n}{6}+\ldots
$$

Solution: The value is $2^{n / 2} \cos (n \pi / 4)$.
To see this observe that, by the Binomial Theorem, the quantity in question is the real part of the expression $(1+i)^{n}$:

$$
(1+i)^{n}=\left(1-\binom{n}{2}+\binom{n}{4}-\binom{n}{6}+\ldots .\right)+i\left(\binom{n}{1}-\binom{n}{3}+\binom{n}{5}-\ldots .\right) .
$$

On the other hand, this power is most efficiently computed using the Euler Formula:

$$
(1+i)^{n}=\left(\sqrt{2} e^{i \pi / 4}\right)^{n}=2^{n / 2}(\cos (n \pi / 4)+i \sin (n \pi / 4)) .
$$

Thus, we have

$$
1-\binom{n}{2}+\binom{n}{4}-\binom{n}{6}+\ldots=2^{n / 2} \cos (n \pi / 4)
$$

as well as

$$
\binom{n}{1}-\binom{n}{3}+\binom{n}{5}-\ldots=2^{n / 2} \sin (n \pi / 4)
$$

