SOLUTION OF THE PUZZLE OF THE WEEK (9/28/2016-10/4/2016)

Problem: Is it true that every positive integer can be represented as

$$
\pm 1^{2} \pm 2^{2} \pm \ldots \pm n^{2}
$$

for some positive integer n and some choice of \pm signs? Justify your claim.

Solution: Yes, every positive integer is expressible in such a form.
We prove this by strong induction. In the base cases we have:

$$
1=+1^{2}, \quad 2=-1^{2}-2^{2}-3^{2}+4^{2}, \quad 3=-1^{2}+2^{2}, \quad 4=-1^{2}-2^{2}+3^{2} .
$$

Suppose that for some $N \geq 4$ all the integers k with $1 \leq k \leq N$ can be represented as a sum $\sum_{i=1}^{n} \pm i^{2}$ (for some suitable n and a suitable choice of \pm signs). It suffices to show that $N+1$ can also be represented in such a form. Consider the number $N-3$; clearly $1 \leq N-3 \leq N$ and the inductive hypothesis applies to $N-3$:

$$
N-3=\sum_{i=1}^{n} \pm i^{2} .
$$

We now observe that

$$
4=(n+1)^{2}-(n+2)^{2}-(n+3)^{2}+(n+4)^{2} .
$$

Adding to the latter to the expression for $N-3$ produces the desired decomposition of $(N-3)+4=N+1$. This completes our inductive proof.

