PUZZLE OF THE WEEK (4/20/2016-4/26/2016)

Problem: Find all rational numbers r for which $\log _{2} r$ is also rational. Justify your claim.

Solution: r has to be an integer power of 2 .
Certainly, $r=1$ is one such number. To find all other examples it suffices to find rational numbers $r>1$ for which $\log _{2} r$ is rational. Indeed, if $r>1$ is one such number so is $1 / r$ and vice versa. Let $r=p / q>1$ with $\operatorname{GCD}(p, q)=1$ be such that $\log _{2} r=m / n$ is rational; we may assume $m, n>0$. It follows that

$$
2^{m / n}=p / q \text { and } q^{n} 2^{m}=p^{n} .
$$

Since $m, n>0$ we see that $2 \mid p$. As $\operatorname{GCD}(p, q)=1$ we know that q is odd. Let us decompose: $p=2^{k} l$ where $k>0$ is an integer and where l is odd. Inserting into the above produces

$$
q^{n} 2^{m-k n}=l^{n}
$$

Since both q and l are odd we must have $m-k n=0$. This means that m / n is an integer and that (therefore) r is the power of 2 .

