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Problem: The series
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converges for |x| > 1. Find, with proof, the expression for the sum of the
series.

Solution: The series sums to 1
x−1 .

Observe that for |x| > 1 we have |x−2n| < 1; hence the geometric series
expansion produces:
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Note that these expansions are in fact absolutely convergent, so the value of
the sum
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is independent of the order of summation. We perform the summation by
gathering terms with the same exponent −N = −k · 2n on the x variable.
Let m be the highest non-negative integer with 2m

∣∣N . Then the term x−N

appears 1 + m times in the summation, and the corresponding coefficient is:

−1− 2− ...− 2m−1 + 2m = 1.

It follows that
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