LEWIS AND CLARK COLLEGE Department of Mathematical Sciences

PUZZLE OF THE WEEK (4/13/2016-4/19/2016)

Problem: The series

$$
\sum_{n=0}^{\infty} \frac{2^{n}}{1+x^{2^{n}}}=\frac{1}{1+x}+\frac{2}{1+x^{2}}+\frac{4}{1+x^{4}}+\frac{8}{1+x^{8}}+\ldots
$$

converges for $|x|>1$. Find, with proof, the expression for the sum of the series.

Solution: The series sums to $\frac{1}{x-1}$.
Observe that for $|x|>1$ we have $\left|x^{-2^{n}}\right|<1$; hence the geometric series expansion produces:

$$
\begin{aligned}
\frac{2^{n}}{1+x^{2^{n}}} & =\frac{2^{n}}{x^{2^{n}}} \cdot \frac{1}{1+x^{-2^{n}}}=\frac{2^{n}}{x^{2^{n}}}\left(1-x^{-2^{n}}+\left(x^{-2^{n}}\right)^{2}-\left(x^{-2^{n}}\right)^{3}+\ldots\right) \\
& =2^{n}\left(x^{-2^{n}}\right)-2^{n}\left(x^{-2 \cdot 2^{n}}\right)+2^{n}\left(x^{-3 \cdot 2^{n}}\right)-\ldots=\sum_{k=1}^{\infty}(-1)^{k-1} 2^{n} x^{-k \cdot 2^{n}} .
\end{aligned}
$$

Note that these expansions are in fact absolutely convergent, so the value of the sum

$$
\sum_{n=0}^{\infty} \frac{2^{n}}{1+x^{2^{n}}}=\sum_{n=0}^{\infty} \sum_{k=1}^{\infty}(-1)^{k-1} 2^{n} x^{-k \cdot 2^{n}}
$$

is independent of the order of summation. We perform the summation by gathering terms with the same exponent $-N=-k \cdot 2^{n}$ on the x variable. Let m be the highest non-negative integer with $2^{m} \mid N$. Then the term x^{-N} appears $1+m$ times in the summation, and the corresponding coefficient is:

$$
-1-2-\ldots-2^{m-1}+2^{m}=1
$$

It follows that

$$
\sum_{n=0}^{\infty} \frac{2^{n}}{1+x^{2^{n}}}=\sum_{N=1}^{\infty} x^{-N}=\frac{x^{-1}}{1-x^{-1}}=\frac{1}{x-1}
$$

