LEWIS AND CLARK COLLEGE Department of Mathematical Sciences

PUZZLE OF THE WEEK (4/6/2016-4/12/2016)

Problem: Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive numbers with $a_{1}+a_{2}+\ldots+a_{n}=1$. Find, with proof, the minimum value of

$$
\sum \frac{1}{a_{i_{1}}+a_{i_{2}}+\ldots+a_{i_{k}}}
$$

where the summation goes over all choices of $i_{1}, i_{2}, \ldots, i_{k} \in\{1,2, \ldots, n\}$ with $i_{1}<i_{2}<\ldots<i_{k}$.

Solution: The minimum is $\frac{n}{k}\binom{n}{k}$.
To see this, one just needs to apply the inequality between the harmonic and the arithmetic means. There are $\binom{n}{k}$ terms in our summation and so

$$
\frac{\binom{n}{k}}{\sum \frac{1}{a_{i_{1}}+a_{i_{2}}+\ldots+a_{i_{k}}}} \leq \frac{\sum\left(a_{i_{1}}+a_{i_{2}}+\ldots+a_{i_{k}}\right)}{\binom{n}{k}} .
$$

In the summation on the right each a_{i} appears $\binom{n-1}{k-1}$ times and thus the value on the right hand side of the inequality is

$$
\frac{\binom{n-1}{k-1}}{\binom{n}{k}}=\frac{k}{n}
$$

The fact that

$$
\frac{n}{k}\binom{n}{k} \leq \sum \frac{1}{a_{i_{1}}+a_{i_{2}}+\ldots+a_{i_{k}}}
$$

is now immediate. To see that this minimum value can actually be reached we use the choice of

$$
a_{1}=a_{2}=\ldots=a_{n}=\frac{1}{n} .
$$

