PUZZLE OF THE WEEK (3/9/2016-3/15/2016)

Problem: Find, with proof, all integer solutions (x, y, u, v) of the equation

$$
x^{2}+y^{2}=3\left(u^{2}+v^{2}\right) .
$$

Solution: The only solution is $x=y=u=v=0$.
To see this suppose the opposite: that there is a non-trivial solution. Then there are solutions with $x, y, u, v \geq 0$ and $x+y+u+v>0$. Amongst those solutions find one for which the total sum $x+y+u+v$ is minimum possible. (Such a solution exists because subsets of natural numbers always reach their minimum.) From now on we refer to this "minimal" solution as $\left(x_{*}, y_{*}, u_{*}, v_{*}\right)$.

We first observe that $\left(x_{*}, y_{*}\right) \neq(0,0)$; otherwise we would have $0=$ $3\left(u_{*}^{2}+v_{*}^{2}\right)$ and consequently $\left(x_{*}, y_{*}, u_{*}, v_{*}\right)=(0,0,0,0)$. In particular, we now know that

$$
x_{*}+y_{*}>0 .
$$

Also note that $x_{*}^{2}+y_{*}^{2}$ is divisible by 3 . Since $(3 k \pm 1)^{2}=3\left(3 k^{2} \pm 2 k\right)+1$ we see that perfect squares can only leave remainders of 0 and 1 after division by 3 . So, the only way for $x_{*}^{2}+y_{*}^{2}$ to be divisible by 3 is if both x_{*}^{2} and y_{*}^{2} are divisible by 3 . In other words, we must have

$$
x_{*}=3 x_{* *} \text { and } y_{*}=3 y_{* *}
$$

for some non-negative integers $x_{* *}$ and $y_{* * *}$. Inserting this information into $x_{*}^{2}+y_{*}^{2}=3\left(u_{*}^{2}+v_{*}^{2}\right)$ produces

$$
9\left(x_{* *}^{2}+y_{* *}^{2}\right)=3\left(u_{*}^{2}+v_{*}^{2}\right) \text { i.e } u_{*}^{2}+v_{*}^{2}=3\left(x_{* *}^{2}+y_{* *}^{2}\right) .
$$

In particular, $\left(u_{*}, v_{*}, x_{* *}, y_{* *}\right)$ is another non-negative integer solution of our equation. By the minimality of ($x_{*}, y_{*}, u_{*}, v_{*}$) we have

$$
u_{*}+v_{*}+x_{* *}+y_{* *} \geq x_{*}+y_{*}+u_{*}+v_{*} \text { i.e } \frac{x_{*}}{3}+\frac{y_{*}}{3} \geq x_{*}+y_{*} \text {. }
$$

The latter is impossible since $x_{*}+y_{*}>0$. This completes our proof that $(0,0,0,0)$ is the only integer solution of our equation.

