PUZZLE OF THE WEEK (3/2/2016-3/8/2016)

Problem: Suppose that $O A, O B, O C$ and $O D$ are four non-coplanar rays in (three-dimensional) space such that the six angles formed by the rays are mutually congruent. What are the measures of these angles? Justify your claim.

Solution: The angles are $\arccos (1 / 3)$ each.
Without loss of generality we may assume that $|O A|=|O B|=|O C|=$ $|O D|=1$. By Side-Angle-Side we conclude that the six triangles $\triangle A O B$, $\triangle A O C$, etc are all congruent. In particular, it follows that

$$
|A B|=|A C|=|A D|=|B C|=|B D|=|C D|
$$

Consequently, $A B C D$ is a regular tetrahedron and O is its center. Since O is the center of the tetrahedron we have

$$
\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}=\overrightarrow{0}
$$

Applying the dot product to both sides of this identity produces

$$
\overrightarrow{O A} \cdot \overrightarrow{O A}+\overrightarrow{O B} \cdot \overrightarrow{O A}+\overrightarrow{O C} \cdot \overrightarrow{O A}+\overrightarrow{O D} \cdot \overrightarrow{O A}=0 \text { i.e. } 1+3 \cos (x)=0
$$

where x denotes the unknown angle. Solving for x proves our claim.

