LEWIS AND CLARK COLLEGE Department of Mathematical Sciences

PUZZLE OF THE WEEK (2/17/2016-2/23/2016)

Problem: One vertex of a rectangle is found at a point A. Two other vertices, not belonging to the same side, lie on two given lines which form a right angle at a point O. Where is the fourth vertex of the rectangle located? Justify your claim. (You may assume that A is not on the two given lines, and that these lines and the point A lie in the same plane.)

Solution: The fourth vertex of the rectangle can be located anywhere along the line through O which is orthogonal to $O A$.

Let $A B C D$ be a rectangle fitting the descriptions of the problem, with vertices B and C on the two given orthogonal lines. Since angles $\angle B A C$, $\angle B D C$ and $\angle B O C$ are all right, we know that A, B, C, D and O all lie on the circle with diameter $B C$. On the other hand, the midpoint of $B C$ is the midpoint of $A D$ and thus the angle $\angle A O D$ is also right. (It suffices to study the case when $O \neq D$.) This proves that D has to lie on the line through O which is orthogonal to $O A$.

Conversely, let D be any point on the line through O which is orthogonal to $O A$. Consider the circle \mathcal{C} with diameter $A D$, and its other two intersections points with the given lines: B and C. (If one of the lines is tangential to \mathcal{C} then take $B=O$ or $C=O$.) Note that the angle $\angle B O C$ is right; consequently, the circle \mathcal{C} is centered at the midpoint of $B C$. (The latter remains to hold even if $B=O$ or $C=O$.) It now follows that $\angle B A C$ and $\angle B D C$ are both right, and that $A B C D$ is a rectangle.

