LEWIS AND CLARK COLLEGE Department of Mathematical Sciences

PUZZLE OF THE WEEK (2/10/2016-2/16/2016)

Problem: A square is intersected by n lines, no three of which go through the same point. It is known that each of these lines divides the square into two trapezoids whose areas are in a $2 \div 3$ ratio. What is the largest value of n ? Justify your claim.

Solution: The maximum value of n is 8 .
Let the the points P, Q, R and S be the midpoints of the sides $A B, B C$, $C D$ and $D A$ of the square $A B C D$. Let K and L be the points on the line segment $P R$ such that

$$
P K \div K R=2 \div 3, \quad \text { and } \quad P L \div L R=3 \div 2 .
$$

Likewise, let M and N be the points on the line segment $Q S$ such that

$$
Q M \div M S=2 \div 3, \quad \text { and } \quad Q N \div N S=3 \div 2
$$

Now let ℓ be any line which intersects the square $A B C D$ into a $2 \div 3$ area ratio. First assume that ℓ intersects $A B, Q S$ and $C D$. Let X be the intersection of ℓ and $Q S$. Since the area of the trapezoid with base $A D$ and the area of the trapezoid with base $B C$ are in a $2 \div 3$ or $3 \div 2$ ratio, it follows that

$$
S X \div X Q=2 \div 3 \text { or } S X \div X Q=3 \div 2
$$

hence $X=N$ or $X=M$. In other words, ℓ must pass through either N or M. If on the other hand, the line ℓ intersects $B C, P R$ and $A D$ the same argument can be employed to conclude that ℓ passes through K or L.

We now have n lines such that each line passes through at least one of K, L, M and N and such that no three lines pass through the same point. By the Pigeonhole Principle we must have $n \leq 8$.

On the other hand, note that each of the 8 lines

$$
P N, P M, R N, R M, Q L, Q K, S L, S K
$$

divide the square $A B C D$ in a $2 \div 3$ ratio, area-wise. Furthermore, no three of these lines pass through the same point, as evidenced by the fact that the parallelograms $P M R N$ and $Q L S K$ have no vertices in common. Thus, $n=8$.

