PUZZLE OF THE WEEK (1/27/2016-2/2/2016)

Problem: Two doctors, Alice and Bob, are asked to examine the same group of n patients. Each appointment would be 15 minutes long. The doctors would start at the same time and take breaks at the same time. In how many ways can the patients (and their appointments) be arranged so that all $2 n$ appointments are completed in $n / 4$ examination hours?

Solution: There are $(n!)^{2}\left(1-\frac{1}{1}+\frac{1}{2!}-\ldots+(-1)^{j} \frac{1}{j!}+\ldots+(-1)^{n} \frac{1}{n!}\right)$ desirable arrangements.

Let $a_{1}, a_{2}, \ldots, a_{n}$ be Alice's appointments and $b_{1}, b_{2}, \ldots, b_{n}$ be Bob's appointments. Note that $b_{1}, b_{2}, \ldots, b_{n}$ is simply a permutation of $a_{1}, a_{2}, \ldots, a_{n}$. For each possible arrangement $a_{1}, a_{2}, \ldots, a_{n}$ (and there are $n!$ such arrangements) we need to determine the number of permutations $b_{1}, b_{2}, \ldots, b_{n}$ of $a_{1}, a_{2}, \ldots, a_{n}$ in which $b_{j} \neq a_{j}$ for all $1 \leq j \leq n$.

Let X_{j} (for a fixed $1 \leq j \leq n$) denote the set of permutations where $b_{j}=$ a_{j}. The idea here is to use the Inclusion-Exclusion Principle to determine

$$
n!-\left|X_{1} \cup X_{2} \cup \ldots \cup X_{n}\right| .
$$

Recall that the Inclusion-Exclusion Principle states

$$
\left|X_{1} \cup X_{2} \cup \ldots \cup X_{n}\right|=\sum(-1)^{l-1}\left|X_{i_{1}} \cap X_{i_{2}} \cap \ldots \cap X_{i_{l}}\right|,
$$

where the summation goes over all $l \geq 1$, and over all possible subsets $\left\{i_{1}, i_{2}, \ldots, i_{l}\right\} \subseteq\{1,2, \ldots, n\}$.

To apply this principle note the following cardinalities (the number of elements):

$$
\left|X_{j}\right|=(n-1)!, \quad\left|X_{j} \cap X_{k}\right|=(n-2)!, \quad\left|X_{j} \cap X_{k} \cap X_{l}\right|=(n-3)!, \ldots
$$

Since there are $\binom{n}{l}$ possibilities for $\left|X_{i_{1}} \cap X_{i_{2}} \cap \ldots \cap X_{i_{l}}\right|$ we see that $\mid X_{1} \cup$ $X_{2} \cup \ldots \cup X_{n} \mid$ is
$\binom{n}{1}(n-1)!-\binom{n}{2}(n-2)!+\ldots+(-1)^{j-1}\binom{n}{i}(n-i)!+\ldots+(-1)^{n-1}\binom{n}{n} 0!$
To summarize: it follows from the Inclusion-Exclusion Principle that the number of permutations $b_{1}, b_{2}, \ldots, b_{n}$ of $a_{1}, a_{2}, \ldots, a_{n}$ in which $b_{j} \neq a_{j}$ for all $1 \leq j \leq n$ is
$n!-\binom{n}{1}(n-1)!+\binom{n}{2}(n-2)!-\ldots+(-1)^{j}\binom{n}{i}(n-i)!+\ldots+(-1)^{n}\binom{n}{n} 0!$
The above expression can be simplified into

$$
n!\left(1-\frac{1}{1}+\frac{1}{2!}-\ldots+(-1)^{j} \frac{1}{j!}+\ldots+(-1)^{n} \frac{1}{n!}\right)
$$

so that the final answer is

$$
(n!)^{2}\left(1-\frac{1}{1}+\frac{1}{2!}-\ldots+(-1)^{j} \frac{1}{j!}+\ldots+(-1)^{n} \frac{1}{n!}\right) .
$$

