PUZZLE OF THE WEEK (1/20/2016-1/27/2016)

Problem: Edges of a regular hexagon are to be colored in blue or red. We consider two colorings to be the same if there is a rotation, reflection or a composition of rotations and reflections which converts one coloring to the other. Determine the number of distinct colorings of the hexagon. Justify your answer.

Solution: The answer is 13 .
There are direct ways of arriving at this answer, but there is also a bigger combinatorics lesson hiding here: a lesson on Pólya-Burnside Theorem.

Theorem 1 Let S be a finite collection of objects and let $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ be a group of symmetries of S (identity symmetry included). For a symmetry g let S^{g} denote the set of objects in S which are unchanged by g. The number of objects in S which are distinguishable relative to the group of symmetries G is given by

$$
\frac{1}{|G|}\left(\left|S^{g_{1}}\right|+\left|S^{g_{2}}\right|+\ldots+\left|S^{g_{n}}\right|\right),
$$

where $|\cdot|$ denotes the number of elements of a set.
Here is how we can apply the theorem to our situation. Observe that the total set of colorings S has $2^{6}=64$ elements, while the group of symmetries G has 12 elements: 6 rotations and 6 reflections. (Note that 0° rotation i.e identity is included here.) There are only 2 colorings which are left unchanged by $\pm 60^{\circ}$-degree rotations, 4 that are left unchanged by $\pm 120^{\circ}$-degree rotations, and 8 that are left unchanged by the 180°-degree rotation. For each reflection
there are 4 colorings which are left unchanged by it. So the Pólya-Burnside Theorem gives us

$$
\frac{1}{12}(64+2 \cdot 2+2 \cdot 4+8+12 \cdot 4)=\frac{1}{12} \cdot 132=13
$$

distinguishable colorings.

