Problem of the Week #12

(Spring 2018)

A transposition of a vector is created by switching exactly two entries of the vector. For example, $(1, \mathbf{5}, 3, 4, \mathbf{2}, 6, 7)$ is a transposition of $(1, \mathbf{2}, 3, 4, \mathbf{5}, 6, 7)$ by switching entries 2 and 5. Find the vector \mathbf{v} if $\mathbf{w} = (0, 0, 1, 1, 0, 1, 1)$, $\mathbf{x} = (0, 0, 1, 1, 1, 1, 0)$, $\mathbf{y} = (1, 0, 1, 0, 1, 1, 0)$, and $\mathbf{z} = (1, 1, 0, 1, 0, 1, 0)$ are all transpositions of \mathbf{v} . Explain the method you use to find \mathbf{v} .

- This is the last POW for this semester.
- Solvers should include their name, address, and status at the College. Solutions can be mailed to MSC 110 via campus mail or placed in Yung-Pin Chen's mailbox in the Math Department Office. Solutions to the above *Problem of the Week* should be received by 5:00 p.m. Monday, April 23, 2018.
- Christopher Karagiannis (so.) solved *Problem of the Week #11*. Congratulations to him.