Problem of the Week \#6

(Spring 2018)

The sequence F_{n} of Fibonacci numbers begins with $F_{1}=1, F_{2}=1$, and for $n \geq 3, F_{n}=F_{n-1}+F_{n-2}$. Thus the first 10 Fibonacci numbers are $1,1,2,3,5,8,13,21,34$, and 55 . Consider the following series

$$
\sum_{n=1}^{\infty} \arctan \left(\frac{1}{F_{2 n+1}}\right)
$$

Determine whether the series converges or diverges. If the series converges, find the sum of the series. Please justify your answer.

- Many thanks to Dr. Roger Nelsen for contributing this Problem Of the Week.
- Solvers should include their name, address, and status at the College. Solutions can be mailed to MSC 110 via campus mail or placed in YungPin Chen's mailbox in the Math Department Office. Solutions to the above Problem of the Week should be received by 5:00 p.m. Monday, March 05, 2018.
- Mack Beveridge (sr.), Arthur Drobot (fr.), Christopher Karagiannis (so.), and Sam Raphael solved Problem of the Week \#5. Congratulations to them.

