LEWIS AND CLARK COLLEGE Department of Mathematical Sciences

PUZZLE OF THE WEEK (2/16/2017-2/22/2017)

Problem: Let A be a matrix with $A^{3}=0$. Does there exist a matrix B such that $e^{B}=I+A$? Justify your claim. Here I denotes the identity matrix, and e^{B} stands for

$$
e^{B}=I+B+\frac{1}{2} B^{2}+\frac{1}{6} B^{3}+\ldots+\frac{1}{n!} B^{n}+\ldots
$$

Solution: Yes, the matrix B is given by $A-\frac{1}{2} A^{2}$; the formula for B is inspired by the expression $\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\ldots$.

In the case of $A=0$ we immediately see that $B=0$ works; in the case when $A^{2}=0$ we see that $B=A$ works. We first investigate the situation when the Jordan normal form of A is

$$
A^{\prime}=P^{-1} A P=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

The matrix $B=A-\frac{1}{2} A^{2}$ is then similar (with the same transition matrix!) to

$$
B^{\prime}=P^{-1} B P=\left(\begin{array}{ccc}
0 & 1 & -\frac{1}{2} \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Observe that

$$
\left(B^{\prime}\right)^{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\left(B^{\prime}\right)^{3}=0
$$

Thus,

$$
e^{B^{\prime}}=I+B^{\prime}+\frac{1}{2}\left(B^{\prime}\right)^{2}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)=I+A^{\prime}
$$

and

$$
e^{B}=P e^{B^{\prime}} P^{-1}=P\left(I+A^{\prime}\right) P^{-1}=I+A .
$$

The situation when A breaks into several nilpotent Jordan normal blocks is a direct consequence of the three cases addressed above.

