PUZZLE OF THE WEEK (1/26/2017-2/1/2017)

Problem: In a convex polyhedron with m triangular faces (and possibly faces of other shapes), exactly four edges meet at each vertex. Find the minimum possible value of m, and justify your claim.

Solution: The smallest attainable value is $m=8$.
Let V, E and F denote the numbers of vertices, edges and faces of the polyhedron; by the Euler Formula we have $V-E+F=2$. Since each vertex corresponds to fours edges and since each edge connects two vertices, we must have $4 V=2 E$, i.e $V=E / 2$. Likewise, since there are $F-m$ faces bounded by at least 4 if not more edges, counting edges bounding each given face ultimately yields:

$$
3 m+4(F-m) \leq 2 E, \text { i.e } F \leq E / 2+m / 4
$$

Inserting into Euler's Formula we get

$$
2 \leq m / 4 \text { i.e. } m \geq 8
$$

That $m=8$ is achievable is evident from the example of the regular octahedron.

