LEWIS AND CLARK COLLEGE Department of Mathematical Sciences

SOLUTION OF THE PUZZLE OF THE WEEK
 (11/9/2016-11/15/2016)

Problem: One day before noon it starts snowing and continues at a constant rate throughout the day. At noon a snowplow begins to clear a road and, moving a constant volume of snow per unit of time, clears two miles during the first hour of operation and one mile during the second hour. When did it start snowing?

Solution: 11: 22:55.
We let $t=0$ denote noon. Let $h(t)$ denote the height of snow at time t; by assumption we have

$$
\frac{d h}{d t}=C_{1}
$$

It follows that $h(t)=C_{1}\left(t-t_{0}\right)$ where $t_{0}<0$ is the moment when it started snowing. Let $v(t)$ denote the linear speed of the snowplow. The rate of removal of snow (that is: the volume of removed snow per unit of time) is equal to

$$
w \cdot h(t) \cdot v(t)
$$

where w denotes the width of the road. By assumption the latter is constant; therefore, we have that $h(t)$ and $v(t)$ are inversely proportional:

$$
v(t)=\frac{C}{h(t)}=\frac{C}{C_{1}\left(t-t_{0}\right)}=\frac{C^{\prime}}{t-t_{0}} .
$$

Finally, assuming time is measured in hours and length is measured in miles, we have

$$
\int_{0}^{1} v(t) d t=2 \int_{1}^{2} v(t) d t=2
$$

Upon canceling C^{\prime} we obtain

$$
\int_{0}^{1} \frac{d t}{t-t_{0}}=2 \int_{1}^{2} \frac{d t}{t-t_{0}}
$$

From here we get the equation

$$
\ln \left(\frac{1-t_{0}}{0-t_{0}}\right)=2 \ln \left(\frac{2-t_{0}}{1-t_{0}}\right)
$$

or equivalently

$$
\left(t_{0}-1\right)^{3}=t_{0}\left(t_{0}-2\right)^{2}
$$

After simplification the equation becomes

$$
t_{0}^{2}-t_{0}-1=0
$$

The only negative solution of this equation is $t_{0}=\frac{1-\sqrt{5}}{2}$ hours. In terms of minutes this time is equivalent to (the negative of) 37 minutes and 5 seconds. Thus, it started snowing at $11: 22: 55$.

