SOLUTION OF THE PUZZLE OF THE WEEK
 (11/2/2016-11/8/2016)

Problem: Suppose that for some continuously differentiable, decreasing function $f(x)$ defined on the real number line the series $\sum_{n=1}^{\infty} f\left(n^{2}\right)$ converges. Is it necessarily the case that the series $\sum_{n=1}^{\infty} \frac{f(n)}{\sqrt{n}}$ converges? Justify your claim.

Solution: Yes, under the given circumstances the series $\sum_{n=1}^{\infty} \frac{f(n)}{\sqrt{n}}$ must be convergent.

Since the series $\sum f\left(n^{2}\right)$ converges we have $f\left(n^{2}\right) \rightarrow 0$ as $n \rightarrow \infty$. As $f(x)$ is decreasing we see that $f(x)$ is positive and satisfies $\lim _{x \rightarrow \infty} f(x)=0$. It now follows from the Integral Test that

$$
\begin{equation*}
\int_{1}^{\infty} f\left(x^{2}\right) d x<\infty \tag{1}
\end{equation*}
$$

Also note that the Integral Test applies to series $\sum \frac{f(x)}{\sqrt{x}}$; indeed, the function $\frac{f(x)}{\sqrt{x}}$ is positive, decreasing:

$$
\frac{d}{d x}\left(\frac{f(x)}{\sqrt{x}}\right)=\frac{\frac{d f}{d x}}{\sqrt{x}}-\frac{f(x)}{2 \sqrt{x^{3}}}<0
$$

and converges to zero as $x \rightarrow \infty$. Thus, to establish the convergence / divergence of the series $\sum \frac{f(x)}{\sqrt{x}}$ it suffices to study the improper integral $\int_{1}^{\infty} \frac{f(x)}{\sqrt{x}} d x$. The latter converges because of (1) and the change of variables $x=\sqrt{u}$:

$$
\int_{1}^{\infty} \frac{f(u)}{\sqrt{u}} d u=2 \int_{1}^{\infty} f\left(x^{2}\right) d x<\infty
$$

