SOLUTION OF THE PUZZLE OF THE WEEK (9/21/2016-9/27/2016)

Problem: Let $f(x)$ be some continuously differentiable function of real variable with $f(0)=f(1)=0$. Does there have to exist some real number c between 0 and 1 such that $f^{\prime}(c)+f(c)=0$? Justify your claim.

Solution: Yes, such a c has to exist.
Consider the auxiliary function $g(x)=e^{x} f(x)$. We now have $g(0)=g(1)=0$. By the Mean Value Theorem there is some c between 0 and 1 such that

$$
g^{\prime}(c)=0
$$

By the Product Rule we have $g^{\prime}(x)=e^{x}\left(f(x)+f^{\prime}(x)\right)$. Since $e^{c} \neq 0$ the condition $g^{\prime}(c)=0$ simply becomes $f(c)+f^{\prime}(c)=0$.

