SOLUTION OF THE PUZZLE OF THE WEEK (9/14/2016-9/20/2016)

Problem: Find the largest integer n such that 2^{n} divides the product

$$
2017 \cdot 2018 \cdot 2019 \cdot \ldots \cdot 4031 \cdot 4032 .
$$

Justify your claim.

Solution: The largest such is $n=2016$.
This problem is the special case of the following general problem:

$$
(n+1)(n+2) \ldots .(n+n)
$$

is divisible by 2^{n} but not divisible by 2^{n+1}. Amongst integers $n+1, n+2$, ..., $2 n$ there are $n-\left\lfloor\frac{n}{2}\right\rfloor$ integers divisible by $2,\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{4}\right\rfloor$ integers divisible by $4, \ldots\left\lfloor\frac{n}{2^{i-1}}\right\rfloor-\left\lfloor\frac{n}{2^{i}}\right\rfloor$ integers divisible by 2^{i}, etc. Thus the highest exponent k for which $(n+1)(n+2) \ldots(n+n)$ is divisible by 2^{k} is:

$$
k=\left(n-\left\lfloor\frac{n}{2}\right\rfloor\right)+\left(\frac{n}{2}-\left\lfloor\frac{n}{4}\right\rfloor\right)+\ldots+\left(\left\lfloor\frac{n}{2^{2-1}}\right\rfloor-\left\lfloor\frac{n}{2^{4}}\right\rfloor\right)+\ldots=n .
$$

