SOLUTION OF THE PUZZLE OF THE WEEK (9/7/2016-9/13/2016)

Problem: Consider the sequence of integers for which the n-th term of the sequence is equal to the perfect square closest to n :

$$
1,1,4,4,4, \ldots
$$

Which, if any, values appear in this sequence exactly 2016 times? Justify your claim.

Solution: The value of 1008^{2} appears in the sequence exactly 2016 times.
To see this let a_{n} (for $n \geq 1$) denote the n-th term of our sequence. Observe that the closest perfect square to a number of the form $n^{2}-n$ is n^{2} :

$$
\left(n^{2}-n\right)-(n-1)^{2}=n+1>n=n^{2}-\left(n^{2}-n\right) .
$$

Likewise, the closest perfect square to a number of the form $n^{2}+n$ is also n^{2}. Thus, for all $-n \leq i \leq n$ we have

$$
a_{n^{2}+i}=n^{2} .
$$

It follows that each perfect square n^{2} appears in the sequence $2 n$ times. Specifically, 1008^{2} appears in the sequence 2016 times.

